Data Structure

Usage[edit]

Data structures serve as the basis for abstract data types (ADT). The ADT defines the logical form of the data type. The data structure implements the physical form of the data type.[5]

Different types of data structures are suited to different kinds of applications, and some are highly specialized to specific tasks. For example, relational databases commonly use B-tree indexes for data retrieval,[6] while compiler implementations usually use hash tables to look up identifiers.[7]

Data structures provide a means to manage large amounts of data efficiently for uses such as large databases and internet indexing services. Usually, efficient data structures are key to designing efficient algorithms. Some formal design methods and programming languages emphasize data structures, rather than algorithms, as the key organizing factor in software design. Data structures can be used to organize the storage and retrieval of information stored in both main memory and secondary memory.[8]

Implementation[edit]

Data structures are generally based on the ability of a computer to fetch and store data at any place in its memory, specified by a pointer—a bit string, representing a memory address, that can be itself stored in memory and manipulated by the program. Thus, the array and record data structures are based on computing the addresses of data items with arithmetic operations, while the linked data structures are based on storing addresses of data items within the structure itself.

The implementation of a data structure usually requires writing a set of procedures that create and manipulate instances of that structure. The efficiency of a data structure cannot be analyzed separately from those operations. This observation motivates the theoretical concept of an abstract data type, a data structure that is defined indirectly by the operations that may be performed on it, and the mathematical properties of those operations (including their space and time cost).[9]

Examples[edit]

Main article: List of data structures

There are numerous types of data structures, generally built upon simpler primitive data types:[10]

  • An array is a number of elements in a specific order, typically all of the same type (depending on the language, individual elements may either all be forced to be the same type, or may be of almost any type). Elements are accessed using an integer index to specify which element is required. Typical implementations allocate contiguous memory words for the elements of arrays (but this is not always a necessity). Arrays may be fixed-length or resizable.
  • linked list (also just called list) is a linear collection of data elements of any type, called nodes, where each node has itself a value, and points to the next node in the linked list. The principal advantage of a linked list over an array is that values can always be efficiently inserted and removed without relocating the rest of the list. Certain other operations, such as random access to a certain element, are however slower on lists than on arrays.
  • record (also called tuple or struct) is an aggregate data structure. A record is a value that contains other values, typically in fixed number and sequence and typically indexed by names. The elements of records are usually called fields or members.
  • union is a data structure that specifies which of a number of permitted primitive types may be stored in its instances, e.g. float or long integer. Contrast with a record, which could be defined to contain a float and an integer; whereas in a union, there is only one value at a time. Enough space is allocated to contain the widest member datatype.
  • tagged union (also called variantvariant recorddiscriminated union, or disjoint union) contains an additional field indicating its current type, for enhanced type safety.
  • An object is a data structure that contains data fields, like a record does, as well as various methods which operate on the data contents. An object is an in-memory instance of a class from a taxonomy. In the context of object-oriented programming, records are known as plain old data structures to distinguish them from objects.[11]

In addition, graphs and binary trees are other commonly used data structures.

Language support[edit]

Most assembly languages and some low-level languages, such as BCPL (Basic Combined Programming Language), lack built-in support for data structures. On the other hand, many high-level programming languages and some higher-level assembly languages, such as MASM, have special syntax or other built-in support for certain data structures, such as records and arrays. For example, the C (a direct descendant of BCPL) and Pascal languages support structs and records, respectively, in addition to vectors (one-dimensional arrays) and multi-dimensional arrays.[12][13]

Most programming languages feature some sort of library mechanism that allows data structure implementations to be reused by different programs. Modern languages usually come with standard libraries that implement the most common data structures. Examples are the C++ Standard Template Library, the Java Collections Framework, and the Microsoft .NET Framework.

Modern languages also generally support modular programming, the separation between the interface of a library module and its implementation. Some provide opaque data types that allow clients to hide implementation details. Object-oriented programming languages, such as C++Java, and Smalltalk, typically use classes for this purpose.

Many known data structures have concurrent versions which allow multiple computing threads to access a single concrete instance of a data structure simultaneously.

Concept[edit]

Data types are used within type systems, which offer various ways of defining, implementing and using them. Different type systems ensure varying degrees of type safety.

Almost all programming languages explicitly include the notion of data type, though different languages may use different terminology.

Common data types include:

For example, in the Java programming language, the type int represents the set of 32-bit integers ranging in value from −2,147,483,648 to 2,147,483,647, as well as the operations that can be performed on integers, such as addition, subtraction, and multiplication. A color, on the other hand, might be represented by three bytes denoting the amounts each of red, green, and blue, and a string representing the color’s name.

Most programming languages also allow the programmer to define additional data types, usually by combining multiple elements of other types and defining the valid operations of the new data type. For example, a programmer might create a new data type named “complex number” that would include real and imaginary parts. A data type also represents a constraint placed upon the interpretation of data in a type system, describing representation, interpretation and structure of values or objects stored in computer memory. The type system uses data type information to check correctness of computer programs that access or manipulate the data.

Most data types in statistics have comparable types in computer programming, and vice versa, as shown in the following table:

Leave a Comment

Your email address will not be published. Required fields are marked *